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Eigenfaces vs. Fisherfaces: Recognition
Using Class Specific Linear Projection

Peter N. Belhumeur, Joao P. Hespanha, and David J. Kriegman

Abstract—We develop a face recognition algorithm which is insensitive to large variation in lighting direction and facial expression.
Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take
advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3D linear
subspace of the high dimensional image space—if the face is a Lambertian surface without shadowing. However, since faces are
not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than
explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the
face with large deviation. Our projection method is based on Fisher's Linear Discriminant and produces well separated classes in a
low-dimensional subspace, even under severe variation in lighting and facial expressions. The Eigenface technique, another method
based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive
experimental results demonstrate that the proposed “Fisherface” method has error rates that are lower than those of the Eigenface

technique for tests on the Harvard and Yale Face Databases.

Index Terms—Appearance-based vision, face recognition, illumination invariance, Fisher’s linear discriminant.

1 INTRODUCTION

Within the last several years, numerous algorithms have
been proposed for face recognition; for detailed surveys see
[1], [2]. While much progress has been made toward recog-
nizing faces under small variations in lighting, facial ex-
pression and pose, reliable techniques for recognition under
more extreme variations have proven elusive.

In this paper, we outline a new approach for face recogni-
tion—one that is insensitive to large variations in lighting
and facial expressions. Note that lighting variability includes
not only intensity, but also direction and number of light
sources. As is evident from Fig. 1, the same person, with the
same facial expression, and seen from the same viewpoint,
can appear dramatically different when light sources illumi-
nate the face from different directions. See also Fig. 4.

Our approach to face recognition exploits two observations:

1) All of the images of a Lambertian surface, taken from
a fixed viewpoint, but under varying illumination, lie
in a 3D linear subspace of the high-dimensional image
space [3].

2) Because of regions of shadowing, specularities, and
facial expressions, the above observation does not ex-
actly hold. In practice, certain regions of the face may
have variability from image to image that often devi-
ates significantly from the linear subspace, and, con-
sequently, are less reliable for recognition.

We make use of these observations by finding a linear
projection of the faces from the high-dimensional image
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space to a significantly lower dimensional feature space
which is insensitive both to variation in lighting direction
and facial expression. We choose projection directions that
are nearly orthogonal to the within-class scatter, projecting
away variations in lighting and facial expression while
maintaining discriminability. Our method Fisherfaces, a
derivative of Fisher’s Linear Discriminant (FLD) [4], [5],
maximizes the ratio of between-class scatter to that of
within-class scatter.

The Eigenface method is also based on linearly project-
ing the image space to a low dimensional feature space [6],
[7], [8]. However, the Eigenface method, which uses princi-
pal components analysis (PCA) for dimensionality reduc-
tion, yields projection directions that maximize the total
scatter across all classes, i.e., across all images of all faces. In
choosing the projection which maximizes total scatter, PCA
retains unwanted variations due to lighting and facial
expression. As illustrated in Figs. 1 and 4 and stated by
Moses et al., “the variations between the images of the same
face due to illumination and viewing direction are almost
always larger than image variations due to change in face
identity” [9]. Thus, while the PCA projections are optimal

Fig. 1. The same person seen under different lighting conditions can
appear dramatically different: In the left image, the dominant light
source is nearly head-on; in the right image, the dominant light source
is from above and to the right.
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for reconstruction from a low dimensional basis, they may
not be optimal from a discrimination standpoint.

We should point out that Fisher’s Linear Discriminant is
a “classical” technique in pattern recognition [4], first de-
veloped by Robert Fisher in 1936 for taxonomic classifica-
tion [5]. Depending upon the features being used, it has
been applied in different ways in computer vision and even
in face recognition. Cheng et al. presented a method that
used Fisher’s discriminator for face recognition, where
features were obtained by a polar quantization of the shape
[10]. Baker and Nayar have developed a theory of pattern
rejection which is based on a two class linear discriminant
[11]. Contemporaneous with our work [12], Cui et al. applied
Fisher’s discriminator (using different terminology, they
call it the Most Discriminating Feature—MDF) in a method
for recognizing hand gestures [13]. Though no implemen-
tation is reported, they also suggest that the method can be
applied to face recognition under variable illumination.

In the sections to follow, we compare four methods for
face recognition under variation in lighting and facial ex-
pression: correlation, a variant of the linear subspace
method suggested by [3], the Eigenface method [6], [7], [8],
and the Fisherface method developed here. The compari-
sons are done using both a subset of the Harvard Database
(330 images) [14], [15] and a database created at Yale (160
images). In tests on both databases, the Fisherface method
had lower error rates than any of the other three methods.
Yet, no claim is made about the relative performance of
these algorithms on much larger databases.

We should also point out that we have made no attempt
to deal with variation in pose. An appearance-based
method such as ours can be extended to handle limited
pose variation using either a multiple-view representation,
such as Pentland et al’s. view-based Eigenspace [16] or Mu-
rase and Nayar’s appearance manifolds [17]. Other ap-
proaches to face recognition that accommodate pose varia-
tion include [18], [19], [20]. Furthermore, we assume that
the face has been located and aligned within the image, as
there are numerous methods for finding faces in scenes
[21], [22], [20], [23], [24], 23], [7]-

2 METHODS

The problem can be simply stated: Given a set of face im-
ages labeled with the person’s identity (the learning set) and
an unlabeled set of face images from the same group of
people (the test set), identify each person in the test images.

In this section, we examine four pattern classification
techniques for solving the face recognition problem, com-
paring methods that have become quite popular in the face
recognition literature, namely correlation [26] and Eigen-
face methods [6], [7], [8], with alternative methods devel-
oped by the authors. We approach this problem within the
pattern classification paradigm, considering each of the
pixel values in a sample image as a coordinate in a high-
dimensional space (the image space).

2.1 Correlation

Perhaps, the simplest classification scheme is a nearest
neighbor classifier in the image space [26]. Under this

scheme, an image in the test set is recognized (classified) by
assigning to it the label of the closest point in the learning
set, where distances are measured in the image space. If all
of the images are normalized to have zero mean and unit
variance, then this procedure is equivalent to choosing the
image in the learning set that best correlates with the test
image. Because of the normalization process, the result is
independent of light source intensity and the effects of a
video camera’s automatic gain control.

This procedure, which subsequently is referred to as cor-
relation, has several well-known disadvantages. First, if the
images in the learning set and test set are gathered under
varying lighting conditions, then the corresponding points
in the image space may not be tightly clustered. So, in order
for this method to work reliably under variations in light-
ing, we would need a learning set which densely sampled
the continuum of possible lighting conditions. Second, cor-
relation is computationally expensive. For recognition, we
must correlate the image of the test face with each image in
the learning set; in an effort to reduce the computation
time, implementors [27] of the algorithm described in [26]
developed special purpose VLSI hardware. Third, it re-
quires large amounts of storage—the learning set must
contain numerous images of each person.

2.2 Eigenfaces

As correlation methods are computationally expensive and
require great amounts of storage, it is natural to pursue
dimensionality reduction schemes. A technique now com-
monly used for dimensionality reduction in computer vi-
sion—particularly in face recognition—is principal compo-
nents analysis (PCA) [14], [17], [6], [7], [8]. PCA techniques,
also known as Karhunen-Loeve methods, choose a dimen-
sionality reducing linear projection that maximizes the
scatter of all projected samples.

More formally, let us consider a set of N sample images
{X1/X2/~~-/XN} taking values in an n-dimensional image
space, and assume that each image belongs to one of ¢
classes {Xl,XZ,..., XC}. Let us also consider a linear trans-
formation mapping the original n-dimensional image space
into an m-dimensional feature space, where m < n. The new
feature vectors y, € R" are defined by the following linear

transformation:
y, =W'x, k=12,..,N M

where W e R™" is a matrix with orthonormal columns.
If the total scatter matrix S, is defined as

k=

—-

where 7 is the number of sample images, and u € R" is the
mean image of all samples, then after applying the linear
transformation WT, the scatter of the transformed feature
vectors {yl,yz,...,yN}is W'S.W. In PCA, the projection
W, is chosen to maximize the determinant of the total
scatter matrix of the projected samples, i.e.,
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Wopt = arg mv\a/\x‘WTSTW‘

=[W1 w2 wm (2)

where {wi | i=1,2,..., m} is the set of n-dimensional eigen-

vectors of S; corresponding to the m largest eigenvalues.
Since these eigenvectors have the same dimension as the
original images, they are referred to as Eigenpictures in [6]
and Eigenfaces in [7], [8]. If classification is performed us-
ing a nearest neighbor classifier in the reduced feature
space and m is chosen to be the number of images N in the
training set, then the Eigenface method is equivalent to the
correlation method in the previous section.

A drawback of this approach is that the scatter being
maximized is due not only to the between-class scatter that is
useful for classification, but also to the within-class scatter
that, for classification purposes, is unwanted information.
Recall the comment by Moses et al. [9]: Much of the variation
from one image to the next is due to illumination changes.
Thus if PCA is presented with images of faces under varying

illumination, the projection matrix W,, will contain princi-

pal components (i.e., Eigenfaces) which retain, in the pro-
jected feature space, the variation due lighting. Conse-
quently, the points in the projected space will not be well
clustered, and worse, the classes may be smeared together.

It has been suggested that by discarding the three most
significant principal components, the variation due to
lighting is reduced. The hope is that if the first principal
components capture the variation due to lighting, then
better clustering of projected samples is achieved by ig-
noring them. Yet, it is unlikely that the first several princi-
pal components correspond solely to variation in lighting;
as a consequence, information that is useful for discrimina-
tion may be lost.

2.3 Linear Subspaces

Both correlation and the Eigenface method are expected to
suffer under variation in lighting direction. Neither method
exploits the observation that for a Lambertian surface with-
out shadowing, the images of a particular face lie in a 3D
linear subspace.

Consider a point p on a Lambertian surface illuminated
by a point light source at infinity. Let s € R> be a column
vector signifying the product of the light source intensity
with the unit vector for the light source direction. When the
surface is viewed by a camera, the resulting image intensity
of the point p is given by

T
E(p) = a(p)n(p) s 3)
where n(p) is the unit inward normal vector to the surface

at the point p, and a(p) is the albedo of the surface at p [28].
This shows that the image intensity of the point p is linear

on s e R Therefore, in the absence of shadowing, given
three images of a Lambertian surface from the same view-
point taken under three known, linearly independent light
source directions, the albedo and surface normal can be
recovered; this is the well known method of photometric
stereo [29], [30]. Alternatively, one can reconstruct the im-

age of the surface under an arbitrary lighting direction by a
linear combination of the three original images, see [3].

For classification, this fact has great importance: It shows
that, for a fixed viewpoint, the images of a Lambertian sur-
face lie in a 3D linear subspace of the high-dimensional im-
age space. This observation suggests a simple classification
algorithm to recognize Lambertian surfaces—insensitive to
a wide range of lighting conditions.

For each face, use three or more images taken under dif-
ferent lighting directions to construct a 3D basis for the lin-
ear subspace. Note that the three basis vectors have the
same dimensionality as the training images and can be
thought of as basis images. To perform recognition, we
simply compute the distance of a new image to each linear
subspace and choose the face corresponding to the shortest
distance. We call this recognition scheme the Linear Sub-
space method. We should point out that this method is a
variant of the photometric alignment method proposed in
[3], and is a special case of the more elaborate recognition
method described in [15]. Subsequently, Nayar and Murase
have exploited the apparent linearity of lighting to augment
their appearance manifold [31].

If there is no noise or shadowing, the Linear Subspace
algorithm would achieve error free classification under any
lighting conditions, provided the surfaces obey the Lam-
bertian reflectance model. Nevertheless, there are several
compelling reasons to look elsewhere. First, due to self-
shadowing, specularities, and facial expressions, some re-
gions in images of the face have variability that does not
agree with the linear subspace model. Given enough im-
ages of faces, we should be able to learn which regions are
good for recognition and which regions are not. Second, to
recognize a test image, we must measure the distance to the
linear subspace for each person. While this is an improve-
ment over a correlation scheme that needs a large number
of images to represent the variability of each class, it is
computationally expensive. Finally, from a storage stand-
point, the Linear Subspace algorithm must keep three im-
ages in memory for every person.

2.4 Fisherfaces

The previous algorithm takes advantage of the fact that,
under admittedly idealized conditions, the variation within
class lies in a linear subspace of the image space. Hence, the
classes are convex, and, therefore, linearly separable. One
can perform dimensionality reduction using linear projec-
tion and still preserve linear separability. This is a strong
argument in favor of using linear methods for dimension-
ality reduction in the face recognition problem, at least
when one seeks insensitivity to lighting conditions.

Since the learning set is labeled, it makes sense to use
this information to build a more reliable method for re-
ducing the dimensionality of the feature space. Here we
argue that using class specific linear methods for dimen-
sionality reduction and simple classifiers in the reduced
feature space, one may get better recognition rates than
with either the Linear Subspace method or the Eigenface
method. Fisher’s Linear Discriminant (FLD) [5] is an exam-
ple of a class specific method, in the sense that it tries to
“shape” the scatter in order to make it more reliable for
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classification. This method selects W in [1] in such a way
that the ratio of the between-class scatter and the within-
class scatter is maximized.

Let the between-class scatter matrix be defined as

Sy = iNf(#i ) - )

and the within-class scatter matrix be defined as

C
T
Sw = 2 Z(Xk = )X — 1)

i=1 x, €X;
where p1,is the mean image of class X;, and N; is the num-
ber of samples in class X;. If S, is nonsingular, the optimal
projection W, is chosen as the matrix with orthonormal
columns which maximizes the ratio of the determinant of
the between-class scatter matrix of the projected samples to
the determinant of the within-class scatter matrix of the
projected samples, i.e.,

W AT
opt = A8 mﬁxw
=[w; w, .. w, (4)

where {wi | i=1, 2,...,m} is the set of generalized eigen-
vectors of S; and S, corresponding to the m largest gener-

alized eigenvalues {/li | i=1, 2,...,m}, ie.,

Syw, = ASuw;, i=12,...,m

Note that there are at most c — 1 nonzero generalized eigen-
values, and so an upper bound on m is ¢ — 1, where c is the
number of classes. See [4].

To illustrate the benefits of class specific linear projec-
tion, we constructed a low dimensional analogue to the
classification problem in which the samples from each class
lie near a linear subspace. Fig. 2 is a comparison of PCA
and FLD for a two-class problem in which the samples from
each class are randomly perturbed in a direction perpen-
dicular to a linear subspace. For this example, N =20, n =2,
and m = 1. So, the samples from each class lie near a line
passing through the origin in the 2D feature space. Both
PCA and FLD have been used to project the points from 2D
down to 1D. Comparing the two projections in the figure,
PCA actually smears the classes together so that they are no
longer linearly separable in the projected space. It is clear
that, although PCA achieves larger total scatter, FLD
achieves greater between-class scatter, and, consequently,
classification is simplified.

In the face recognition problem, one is confronted with
the difficulty that the within-class scatter matrix S, € R™"
is always singular. This stems from the fact that the rank of
Sy is at most N — ¢, and, in general, the number of images
in the learning set N is much smaller than the number of
pixels in each image n. This means that it is possible to
choose the matrix W such that the within-class scatter of the
projected samples can be made exactly zero.

In order to overcome the complication of a singular S,
we propose an alternative to the criterion in (4). This

feature 2
+
N
o
© 0o

2 %O\D
4 O :class 1

s & + class 2

feature 1

Fig. 2. A comparison of principal component analysis (PCA) and
Fisher's linear discriminant (FLD) for a two class problem where data
for each class lies near a linear subspace.

method, which we call Fisherfaces, avoids this problem by
projecting the image set to a lower dimensional space so
that the resulting within-class scatter matrix S, is nonsin-
gular. This is achieved by using PCA to reduce the dimen-
sion of the feature space to N — ¢, and then applying the

standard FLD defined by (4) to reduce the dimension to ¢ — 1.

More formally, W, is given by
T T T
Wopt = Wﬂdwpm (5)

where
W, = arg max ‘WTSTW‘

WTWLS W, |

pea pea

WTWS, W, W]

W, = arg max
fld g W
pea pca

Note that the optimization for me is performed over

n X (N — ¢) matrices with orthonormal columns, while the
optimization for Wﬂ 4 is performed over (N — ¢) X m matrices
with orthonormal columns. In computing me, we have

thrown away only the smallest ¢ - 1 principal components.
There are certainly other ways of reducing the within-
class scatter while preserving between-class scatter. For
example, a second method which we are currently investi-
gating chooses W to maximize the between-class scatter of
the projected samples after having first reduced the within-
class scatter. Taken to an extreme, we can maximize the
between-class scatter of the projected samples subject to the
constraint that the within-class scatter is zero, i.e.,

W,

= aTg max Ws,w| )

where W is the set of 1 X m matrices with orthonormal col-
umns contained in the kernel of S, .
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3 EXPERIMENTAL RESULTS

In this section, we present and discuss each of the afore-
mentioned face recognition techniques using two different
databases. Because of the specific hypotheses that we
wanted to test about the relative performance of the consid-
ered algorithms, many of the standard databases were in-
appropriate. So, we have used a database from the Harvard
Robotics Laboratory in which lighting has been systemati-
cally varied. Secondly, we have constructed a database at
Yale that includes variation in both facial expression and
lighting. !

3.1 Variation in Lighting

The first experiment was designed to test the hypothesis
that under variable illumination, face recognition algo-
rithms will perform better if they exploit the fact that im-
ages of a Lambertian surface lie in a linear subspace. More
specifically, the recognition error rates for all four algo-
rithms described in Section 2 are compared using an im-
age database constructed by Hallinan at the Harvard Ro-
botics Laboratory [14], [15]. In each image in this data-
base, a subject held his/her head steady while being illu-
minated by a dominant light source. The space of light
source directions, which can be parameterized by spheri-
cal angles, was then sampled in 15° increments. See Fig. 3.
From this database, we used 330 images of five people (66
of each). We extracted five subsets to quantify the effects
of varying lighting. Sample images from each subset are
shown in Fig. 4.

Subset 1 contains 30 images for which both the longitudi-
nal and latitudinal angles of light source direction are
within 15° of the camera axis, including the lighting

1. The Yale database is available for download from http://cvc.yale.edu.

Subset 1

Subset 2

Subset 3

st Ml
7 TN,
\T‘\\\\

=]

Subset 1

- Subset 2
Subset 3

\ \ \\ // / éﬁ— Subset 4
:47 Subset 5

=]

Fig. 3. The highlighted lines of longitude and latitude indicate the light
source directions for Subsets 1 through 5. Each intersection of a lon-
gitudinal and latitudinal line on the right side of the illustration has a
corresponding image in the database.

direction coincident with the camera’s optical axis.

Subset 2 contains 45 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 30° from the camera axis.

Subset 3 contains 65 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 45° from the camera axis.

Subset 4 contains 85 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 60° from the camera axis.

Subset 5 contains 105 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 75° from the camera axis.

For all experiments, classification was performed using a
nearest neighbor classifier. All training images of an indi-

Subset 4 Subset 5

Fig. 4. Example images from each subset of the Harvard Database used to test the four algorithms.
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Fig. 5. Extrapolation: When each of the methods is trained on images with near frontal illumination (Subset 1), the graph and corresponding table show

the relative performance under extreme light source conditions.

vidual were projected into the feature space. The images
were cropped w1th1n the face so that the contour of the
head was excluded For the Eigenface and correlation tests,
the images were normalized to have zero mean and unit
variance, as this improved the performance of these meth-
ods. For the Eigenface method, results are shown when ten
principal components were used. Since it has been sug-
gested that the first three principal components are primar-
ily due to lighting variation and that recognition rates can
be improved by eliminating them, error rates are also pre-
sented using principal components four through thirteen.

We performed two experiments on the Harvard Data-
base: extrapolation and interpolation. In the extrapolation
experiment, each method was trained on samples from
Subset 1 and then tested using samples from Subsets 1, 2,
and 3. Since there are 30 images in the training set, cor-
relation is equivalent to the Eigenface method using 29
principal components. Fig. 5 shows the result from this
experiment.

In the interpolation experiment, each method was trained
on Subsets 1 and 5 and then tested the methods on Subsets 2,
3, and 4. Fig. 6 shows the result from this experiment.

These two experiments reveal a number of interesting
points:

1) All of the algorithms perform perfectly when lighting
is nearly frontal. However, as lighting is moved off

2. We have observed that the error rates are reduced for all methods when
the contour is included and the subject is in front of a uniform background.
However, all methods performed worse when the background varies.

3. To test the methods with an image from Subset 1, that image was removed
from the training set, i.e., we employed the “leaving-one-out” strategy [4].

axis, there is a significant performance difference
between the two class-specific methods and the Ei-
genface method.

2) It has also been noted that the Eigenface method is
equivalent to correlation when the number of Eigen-
faces equals the size of the training set [17], and since
performance increases with the dimension of the ei-
genspace, the Eigenface method should do no better
than correlation [26]. This is empirically demonstrated
as well.

3) In the Eigenface method, removing the first three
principal components results in better performance
under variable lighting conditions.

4) While the Linear Subspace method has error rates that
are competitive with the Fisherface method, it re-
quires storing more than three times as much infor-
mation and takes three times as long.

5) The Fisherface method had error rates lower than the
Eigenface method and required less computation time.

3.2 Variation in Facial Expression, Eye Wear, and
Lighting

Using a second database constructed at the Yale Center for
Computational Vision and Control, we designed tests to de-
termine how the methods compared under a different range
of conditions. For sixteen subjects, ten images were acquired
during one session in front of a simple background. Subjects
included females and males (some with facial hair), and
some wore glasses. Fig. 7 shows ten images of one subject.
The first image was taken under ambient lighting in a neutral
facial expression and the person wore glasses. In the second
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Correlation 129 0.0 21.54 7.1
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Fisherface 4 0.0 0.0 1.2

Fig. 6. Interpolation: When each of the methods is trained on images from both near frontal and extreme lighting (Subsets 1 and 5), the graph and
corresponding table show the relative performance under intermediate lighting conditions.

image, the glasses were removed. If the person normally
wore glasses, those were used; if not, a random pair was bor-
rowed. Images 3-5 were acquired by illuminating the face in
a neutral expression with a Luxolamp in three positions. The
last five images were acquired under ambient lighting with
different expressions (happy, sad, winking, sleepy, and sur-
prised). For the Eigenface and correlation tests, the images
were normalized to have zero mean and unit variance, as this
improved the performance of these methods. The images
were manually centered and cropped to two different scales:
The larger images included the full face and part of the back-
ground while the closely cropped ones included internal
structures such as the brow, eyes, nose, mouth, and chin, but
did not extend to the occluding contour.

In this test, error rates were determined by the “leaving-
one-out” strategy [4]: To classify an image of a person, that
image was removed from the data set and the dimension-
ality reduction matrix W was computed. All images in the
database, excluding the test image, were then projected
down into the reduced space to be used for classification.
Recognition was performed using a nearest neighbor classi-
fier. Note that for this test, each person in the learning set is
represented by the projection of ten images, except for the
test person who is represented by only nine.

In general, the performance of the Eigenface method
varies with the number of principal components. Thus, be-
fore comparing the Linear Subspace and Fisherface methods
with the Eigenface method, we first performed an experi-

Fig. 7. The Yale database contains 160 frontal face images covering 16 individuals taken under 10 different conditions: A normal image under
ambient lighting, one with or without glasses, three images taken with different point light sources, and five different facial expressions.
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Fig. 9. The graph and corresponding table show the relative performance of the algorithms when applied to the Yale Database which contains

variation in facial expression and lighting.

ment to determine the number of principal components
yielding the lowest error rate. Fig. 8 shows a plot of error
rate vs. the number of principal components, for the closely
cropped set, when the initial three principal components
were retained and when they were dropped.

The relative performance of the algorithms is self evident
in Fig. 9. The Fisherface method had error rates that were
better than half that of any other method. It seems that the
Fisherface method chooses the set of projections which per-
forms well over a range of lighting variation, facial expres-
sion variation, and presence of glasses.

Note that the Linear Subspace method faired compara-
tively worse in this experiment than in the lighting experi-
ments in the previous section. Because of variation in facial
expression, the images no longer lie in a linear subspace.
Since the Fisherface method tends to discount those por-
tions of the image that are not significant for recognizing an
individual, the resulting projections W tend to mask the
regions of the face that are highly variable. For example, the
area around the mouth is discounted, since it varies quite a
bit for different facial expressions. On the other hand, the
nose, cheeks, and brow are stable over the within-class
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variation and are more significant for recognition. Thus, we
conjecture that Fisherface methods, which tend to reduce
within-class scatter for all classes, should produce projec-
tion directions that are also good for recognizing other faces
besides the ones in the training set.

All of the algorithms performed better on the images of
the full face. Note that there is a dramatic improvement in
the Fisherface method where the error rate was reduced
from 7.3 percent to 0.6 percent. When the method is trained
on the entire face, the pixels corresponding to the occluding
contour of the face are chosen as good features for dis-
criminating between individuals, i.e., the overall shape of
the face is a powerful feature in face identification. As a
practical note, however, it is expected that recognition rates
would have been much lower for the full face images if the
background or hair styles had varied and may even have
been worse than the closely cropped images.

3.3 Glasses Recognition

When using class specific projection methods, the learning
set can be divided into classes in different manners. For
example, rather than selecting the classes to be individual
people, the set of images can be divided into two classes:
“wearing glasses” and “not wearing glasses.” With only two
classes, the images can be projected to a line using the
Fisherface methods. Using PCA, the choice of the Eigenfaces
is independent of the class definition.

In this experiment, the data set contained 36 images
from a superset of the Yale Database, half with glasses. The
recognition rates were obtained by cross validation, i.e., to
classify the images of each person, all images of that person
were removed from the database before the projection ma-
trix W was computed. Table 1 presents the error rates for
two different methods.

TABLE 1
COMPARATIVE RECOGNITION ERROR RATES FOR GLASSES/
NoO GLASSES RECOGNITION USING THE YALE DATABASE

Glasses Recognition
Method Reduced Space Error Rate
(%)
PCA 10 52.6
Fisherface 1 5.3

PCA had recognition rates near chance, since, in most
cases, it classified both images with and without glasses to
the same class. On the other hand, the Fisherface methods
can be viewed as deriving a template which is suited for
finding glasses and ignoring other characteristics of the face.
This conjecture is supported by observing the Fisherface in
Fig. 10 corresponding to the projection matrix W. Naturally,
it is expected that the same techniques could be applied to
identifying facial expressions where the set of training im-
ages is divided into classes based on the facial expression.

4 CONCLUSION
The experiments suggest a number of conclusions:

1) All methods perform well if presented with an image
in the test set which is similar to an image in the train-
ing set.

Fig. 10. The left image is an image from the Yale Database of a person
wearing glasses. The right image is the Fisherface used for determin-
ing if a person is wearing glasses.

2) The Fisherface method appears to be the best at ex-
trapolating and interpolating over variation in lighting,
although the Linear Subspace method is a close second.

3) Removing the largest three principal components does
improve the performance of the Eigenface method in
the presence of lighting variation, but does not
achieve error rates as low as some of the other meth-
ods described here.

4) In the limit, as more principal components are used in
the Eigenface method, performance approaches that
of correlation. Similarly, when the first three principal
components have been removed, performance im-
proves as the dimensionality of the feature space is in-
creased. Note, however, that performance seems to
level off at about 45 principal components. Sirovitch
and Kirby found a similar point of diminishing returns
when using Eigenfaces to represent face images [6].

5) The Fisherface method appears to be the best at simul-
taneously handling variation in lighting and expres-
sion. As expected, the Linear Subspace method suffers
when confronted with variation in facial expression.

Even with this extensive experimentation, interesting
questions remain: How well does the Fisherface method
extend to large databases. Can variation in lighting condi-
tions be accommodated if some of the individuals are only
observed under one lighting condition?

Additionally, current face detection methods are likely to
break down under extreme lighting conditions such as Sub-
sets 4 and 5 in Fig. 4, and so new detection methods are
needed to support the algorithms presented in this paper.
Finally, when shadowing dominates, performance degrades
for all of the presented recognition methods, and techniques
that either model or mask the shadowed regions may be
needed. We are currently investigating models for repre-
senting the set of images of an object under all possible illumi-
nation conditions, and have shown that the set of n-pixel im-
ages of an object of any shape and with an arbitrary reflec-
tance function, seen under all possible illumination condi-
tions, forms a convex cone in R" [32]. Furthermore, and most
relevant to this paper, it appears that this convex illumination
cone lies close to a low-dimensional linear subspace [14].
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